Dynamic stopping criteria for search-based test data generation for path testing
نویسندگان
چکیده
Context: Evolutionary algorithms have proved to be successful for generating test data for path coverage testing. However in this approach, the set of target paths to be covered may include some that are infeasible. It is impossible to find test data to cover those paths. Rather than searching indefinitely, or until a fixed limit of generations is reached, it would be desirable to stop searching as soon it seems likely that feasible paths have been covered and all remaining un-covered target paths are infeasible. Objective: The objective is to develop criteria to halt the evolutionary test data generation process as soon as it seems not worth continuing, without compromising testing confidence level. Method: Drawing on software reliability growth models as an analogy, this paper proposes and evaluates a method for determining when it is no longer worthwhile to continue searching for test data to cover uncovered target paths. We outline the method, its key parameters, and how it can be used as the basis for different decision rules for early termination of a search. Twenty-one test programs from the SBSE path testing literature are used to evaluate the method. Results: Compared to searching for a standard number of generations, an average of 30–75% of total computation was avoided in test programs with infeasible paths, and no feasible paths were missed due to early termination. The extra computation in programs with no infeasible paths was negligible. Conclusions: The method is effective and efficient. It avoids the need to specify a limit on the number of generations for searching. It can help to overcome problems caused by infeasible paths in search-based test data generation for path testing. 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Optimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملComparison of BDBFF & ALBFF for Basis Path Testing Using GA
Automatic path oriented test data generation is not only a crucial problem but also a hot issue in the research area of software testing today. In this paper genetic algorithm (GA) has been used as a robust metaheuristic search method under basis path testing coverage criteria. Two types of fitness function have been used, one is branch distance based fitness function (BDBFF) and other is appro...
متن کاملAutomated Software Test Data Generation
Abstracr-Test data generation in program testing is the process of identifying a set of test data which satisfies given testing criterion. Most of the existing test data generators 161, [It], [lo], [16], [30] use symbolic evaluation to derive test data. However, in practical programs this technique frequently requires complex algebraic manipulations, especially in the presence of arrays. In thi...
متن کاملSearch based algorithms for test sequence generation in functional testing
Context: The generation of dynamic test sequences from a formal specification, complementing traditional testing methods in order to find errors in the source code. Objective: In this paper we extend one specific combinatorial test approach, the Classification Tree Method (CTM), with transition information to generate test sequences. Although we use CTM, this extension is also possible for any ...
متن کاملA New Software Data-Flow Testing Approach via Ant Colony Algorithms
Search-based optimization techniques (e.g., hill climbing, simulated annealing, and genetic algorithms) have been applied to a wide variety of software engineering activities including cost estimation, next release problem, and test generation. Several search based test generation techniques have been developed. These techniques had focused on finding suites of test data to satisfy a number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information & Software Technology
دوره 56 شماره
صفحات -
تاریخ انتشار 2014